Theorem 2.1.12 If gcd(n1,n2) = 1, then the pair of congruences x ≡ a (mod n1),
x≡ a (mod n2) has a unique solution x ≡ a (mod n1n2).
Definition 2.1.10 The multiplicative group of Zn is
Z*n = {a Є Zn|gcd(a, n)=1}.
In particular, if n is a prime, then Z*n = {a|1 ≤ a ≤ n - 1}.
Definition 2.1.11 The order of Z*n is defined to be the number of elements in Z*,namely |Z*n|.
Yorumlar
Yorum Gönder
yorumlarınızın okunduğuna emin olun:) Erhan DUMAN