Definition 2.1.7 For n ≥1, let (n) denote the number of integers in the interval [1,n]
which are relatively prime to n. The function is called the Euler phi function.
Theorem 2.1.6 (properties of Euler phi function)
1. If p is a prime, then φ(p)=p - 1.
2. The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then
φ (mn)= φ (m) · φ (n).
k is the prime factorization of n, then
3. If p^e1. p^e2…p^ek
k (pk - 1)
φ (n)=p^(e1 -1) × p^(e2 -1) ×···×p^(ek -1)
= n (1 – 1/p1)(1-1/p2)…(1-1/pk).
Yorumlar
Yorum Gönder
yorumlarınızın okunduğuna emin olun:) Erhan DUMAN